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Abstract— Exponential Increase Exponential Decrease (EIED)
backoff algorithm, a flexible backoff algorithm with a number of
adjustable parameters, was proposed by Song et al. to enhance
the performance of the IEEE 802.11 DCF, where the performance
benefit of EIED was shown by simulation.

In this paper, we extend on the previous work, and provide
an analysis of EIED backoff algorithm and an optimization
methodology of the parameters of EIED based on the analysis.

I. INTRODUCTION

The Distributed Coordination Function (DCF) is the fun-
damental access mechanism in the IEEE 802.11 MAC. In
DCF, Binary Exponential Backoff (BEB) algorithm is used
as a contention resolution scheme. However, the performance
of BEB suffers when the network is heavily loaded since
the backoff procedure for every new packet starts with the
minimum contention window.

In [1], Exponential Increase Exponential Decrease (EIED)
backoff algorithm was proposed to enhance the performance of
the IEEE 802.11 DCF. It was shown that while the throughput
of EIED and BEB are the same and identical to the systemwide
packet arrival rate when the packet arrival rate is small,
as the packet arrival rate increases, BEB reaches saturation
first and thus EIED has higher throughput than BEB does.
EIED provides significant performance improvement without
additional complexity.

EIED is a quite flexible backoff algorithm with a number of
adjustable parameters. The optimal values of the parameters
depend on the operating condition of the network such as the
network load, packet length, etc. It was shown in [1] that the
performance of EIED varies depending on the choices of the
backoff factors using computer simulation. Even though the
simulation results gave a good insight on how the backoff
factors affect the performance of EIED, no analytical result
was given to provide a means to make systematic decisions
on the values of the backoff factors. In this paper, we extend
on the previous work presented in [1], and provide an analysis
of EIED backoff algorithm and an optimization methodology
of the parameters of EIED based on the analysis.

II. EIED BACKOFF ALGORITHM

In EIED, the contention window size (CW) is exponentially
increased by a backoff factor rI > 1 whenever a packet is
involved in a collision, and is exponentially decreased by a
backoff factor rD > 1 if a packet is transmitted successfully.
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Fig. 1. Backoff mechanism of BEB and EIED. (S: success, C: collision)

EIED backoff algorithm can be expressed as follows:

CW = min[rI · CW, CWmax] on a collision,

CW = max[CW/rD, CWmin] on a success,
(1)

where CWmin and CWmax are the minimum and the maximum
contention window sizes, respectively.

In general, the relationship between rI and rD is given by

rm
I = rn

D, (2)

where m and n are integers greater than or equal to 1.
However, our previous simulation studies, part of which was
published in [1], shows that there is no performance benefit
when rD > rI , and thus we restrict our analysis and optimiza-
tion effort only within a subset of the parameter space defined
by

CWmax = rM
I · CWmin, M ≥ 0, (3)

rI = rn
D, n ≥ 1, (4)

where M is a non-negative integer. Fig. 1(a) shows the backoff
mechanism of BEB, and Fig. 1(b) shows the backoff mecha-
nism of EIED with rI = 2, rD =

√
2 when CWmin = 16, and

CWmax = 1024. Note that for the given CWmin and CWmax,
these backoff parameters rI = 2 and rD =

√
2 correspond to

(M,n) = (6, 2), where integers M and n are defined in (3)
and (4).
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In the subset of the parameter space of interest, there are
(Mn + 1) backoff states. Let Wi be the contention window
size of backoff state i, where Wi is given by

Wi = CWmin · ri
D, i = 0, 1, 2, · · · ,Mn. (5)

For integer Wi, a backoff counter value is chosen from
{0, 1, · · · ,Wi − 1} with equal probability 1/Wi. That is,
entering backoff state i, a node sets its backoff counter to
a random number Di of uniform distribution, where

Pr{Di = k} =
1

Wi
, k = 0, 1, · · · ,Wi − 1. (6)

In EIED, however, the contention window size is not always
an integer due to the non-integer backoff factors rI and rD.
For non-integer Wi, the probability distribution of Di is given
by

Pr{Di = k} =
Xi + 1 − Yi

Xi(Xi + 1)
, k = 0, 1, · · · ,Xi − 1,

Pr{Di = Xi} =
Yi

Xi + 1
,

(7)

where Xi and Yi are the integer and fractional parts of Wi

defined by

Xi = �Wi�, (8)

Yi = Wi − Xi. (9)

For integer Wi, this operation is equivalent to (6).
As an alternative to (7), for non-integer Wi, Wi can be

rounded to the closest integer by approximating Yi = 0. This
approach will render the behavior of EIED very close to that of
using the probability distribution in (7), and is a very practical
choice for implementation. However, this approach makes the
analysis extremely complicated. For example, (16) does not
hold anymore with this approximation.

In the IEEE 802.11 DCF, the backoff counter is decreased
at the end of each idle backoff time slot, and a node transmits
its packet when the backoff counter reaches zero [2]. In this
paper, however, we consider an additional enhancement of the
IEEE 802.11 DCF in addition to EIED backoff algorithm. The
IEEE 802.11 DCF can be further improved by changing the
behavior such that the backoff counter is decreased also at the
end of DIFS or EIFS. This minor enhancement of the IEEE
802.11 DCF has also been proposed and discussed by Vaidya
in the mailing list of the MANET (Mobile Ad hoc Networks)
working group in the Internet Engineering Task Force (IETF)
[3]. This change makes the MAC protocol more efficient,
even though the difference may not be very significant. As an
additional benefit of the change, the analysis becomes much
simpler. Note that Bianchi’s analysis model of IEEE 802.11
DCF in [4], and other analytical works that follows Bianchi’s
model imply this modification without explicitly specifying it.
In this paper, whenever EIED backoff algorithm is considered,
this additional enhancement of the IEEE 802.11 DCF is always
implied unless indicated otherwise.
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Fig. 2. Schematic comparison of the performance profile between BEB and
EIED in terms of throughput vs. packet arrival rate.

III. ANALYSIS OF EIED

ANALYSIS MODEL: As shown in [1], the performance dif-
ference between different backoff algorithms is insignificant
under non-saturated condition. Fig. 2 illustrates typical per-
formance profiles of BEB and EIED. (See Fig. 3 in [1] for
simulation results showing this behavior.) As shown in the
figure, the performance of the backoff algorithms only makes
a practical difference when the network is saturated, and thus
we analyze and optimize EIED under saturation condition in
steady state. The saturation condition assumption is also made
by Bianchi et al. in [5], where they used a 2-D Markov chain
model to analyze the throughput of the IEEE 802.11 DCF.
In our analysis, however, we use a 1-D Markov chain model,
which is much simpler and easier to analyze without any loss
of accuracy compared to the 2-D Markov chain model. This
was achieved by removing deterministic behavior of the IEEE
802.11 DCF from the Markov chain model.

Let Bk be the backoff state that a node enters after k state
transitions. Then, Bk is a 1-D Markov chain with Mn + 1
states, where M and n are defined in (3) and (4). Assuming
the system is in steady state, let Pi be a probability defined
as

Pi = Pr{Bk = i}, i = 0, 1, 2, · · · ,Mn, (10)

then Pi is the relative frequency that a node will enter state i
in steady state, and satisfies

Mn∑
i=0

Pi = 1. (11)

Let pc be the probability that a transmitted packet will expe-
rience a collision, then




P0

P1

P2

...
PMn




T

=




P0

P1

P2

...
PMn




T



qc · · · pc

qc
↑

(n+1)-th
column

. . .
. . . pc

. . .
...

qc pc




,

(12)
where qc = 1− pc, and the (Mn + 1)× (Mn + 1) matrix on
the right-hand side is the state transition matrix of the Markov
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chain. In the case shown in Fig. 1(b) where M = 6 and n = 2,
(12) can be written as follows




P0

P1

P2

...
P12




T

=




P0

P1

P2

...
P12




T




qc 0 pc

qc 0 0 pc

. . .
. . .

pc

. . .
...

qc pc




,

(13)
For example, (13) says that P2 = pcP0 + qcP3, which means
that the relative frequency that a node will will enter state 2 is
the probability that a node in state 0 will experience a collision
plus the probability that a node in state 3 will successfully
transmit a packet.

When n = 1, Pi is obtained in a closed form from (12) as
follows:

Pi =
1∑M

m=0

(
pc

1−pc

)m

(
pc

1 − pc

)i

, i = 0, 1, 2, · · · ,M.

(14)
For general n ≥ 1, a closed form solution for (12) does not
exist, but Pi can be calculated numerically using the power
method as follows:

[
P0 P1 P2 · · · PMn

]
= lim

k→∞
eTT k, (15)

where T is the state transition matrix defined in (12), and
the positive vector e is an initial condition such that | e |1=
1. Since T is a regular stochastic matrix, from the Perron-
Frobenius Theorem, (15) converges exponentially to a unique
solution, the left eigen-vector of T [6].

A state transition occurs after each packet transmission, and
Pi represents only the probability (relative frequency) that a
node enters state i. However, the expected time a node will
stay in a state is different for each state due to the different
contention window sizes. In state i, after choosing a random
backoff counter value Di, it takes Di + 1 backoff time slots
for a node to transit to another state after a successful or
unsuccessful transmission. On average, a node will stay in
state i for

di = E{Di + 1} =
Wi + 1

2
, i = 0, 1, · · · ,Mn, (16)

backoff time slots. Let Si be the probability that a node is
in state i at an arbitrary time instance, then Si defines the
distribution of nodes over the backoff states, and is given by

Si =
Pidi

d
, (17)

where

d =
Mn∑
i=0

Pidi =
1
2

+
W0

2

Mn∑
i=0

Pir
i (18)

Define si,k, i = 0, 1, · · · ,Mn , k = 0, 1, · · · ,Xi, as the
probability that a node is in backoff state i and its backoff

counter value is k, then

Si =
Xi∑

k=0

si,k. (19)

Since the backoff counter is decreased by one at the elapse of
every backoff time slot,

si,k =
Xi∑

d=k

Si Pr{Di = d | i}Pr{t = k | i,Di = d} (20)

Note that

Pr{t = 0 | i,Di = 0} = Pr{t = 1 | i,Di = 1}
· · ·

= Pr{t = Xi | i,Di = Xi} (21)

and

Pr{t = 0 | i,Di = d} = Pr{t = 1 | i,Di = d}
· · ·

= Pr{t = d | i,Di = d}. (22)

From (7), (20) can be written as

si,k = Si
Xi + 1 − Yi

Xi(Xi + 1)

Xi−1∑
d=k

x + Si
Yi

Xi + 1
x

= Si

(
1 − Xi + 1 − Yi

Xi(Xi + 1)
k

)
x, (23)

where

x = Pr{t = k | i,Di = d}, k = 0, 1, · · · , d,
d = 0, 1, · · · ,Xi.

(24)

By substituting (23) into (19), we obtain

x =
1
di

, (25)

where Wi = Xi + Yi and (16) are used. From (17), (23), and
(25), we have

si,k =
(

1 − Xi + 1 − Yi

Xi(Xi + 1)
k

)
Si

di

(26)

=
(

1 − Xi + 1 − Yi

Xi(Xi + 1)
k

)
Pi

d
(27)

Note that si,0 is the probability that a node is in state i and
the backoff counter is expired. Let pt be the probability that
a node will transmit a packet in an arbitrary time slot. Thus,

pt =
Mn∑
i=0

si,0 =
Mn∑
i=0

Pi

d
=

1
d

(28)

For the special case of n = 1,

Si =
( pc

1−pc
)i(wi + 1)∑M

m=0(
pc

1−pc
)m + W0

∑M
m=0(

rpc

1−pc
)m

(29)

d =
1
2

+
W0

2

∑M
m=0(

rpc

1−pc
)m

∑M
m=0(

pc

1−pc
)m

(30)

pt =
2

1 + W0

∑M
m=0(

rpc

1−pc
)m /

∑M
m=0(

pc

1−pc
)m

(31)
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Fig. 3. Plots of (28) and (33). The monotonically decreasing functions
represent (28) with CWmin = 16, CWmax = 1024 (dotted lines: CWmax =
∞), rI = 2, n = 1, 2, 4, 8. The monotonically increasing functions represent
(33) with N = 5, 10, 20, 30, 50.

In our analysis so far, we assumed that the probability
of collision of a transmitted packet pc was known, and pt

was calculated in terms of pc. Now, assume pt is known. A
collision occurs when more than two nodes transmit at the
same time, and the conditional probability that a transmitted
packet will experience a collision can be expressed in terms
of pt as

pc = 1 − (1 − pt)N−1, (32)

where (1 − pt)N−1 is the probability that none of the other
N − 1 nodes will transmit. Solving (32) for pt gives

pt = 1 − (1 − pc)1/(N−1). (33)

Note that pt in (33) is a monotonically increasing function
of pc. This is because when there are more transmissions,
there is more chance of a collision. On the other hand,
in (28), pt is a monotonically decreasing function of pc,
because higher pc causes more backoff and thus larger average
contention window size, which leads to smaller probability of
transmission pt. We do not prove the monotonicity of (28)
in this paper and accept it as a conjecture. A proof of the
monotonicity of a corresponding equation for the case of BEB
can be found in [7]. Due to the monotonicity of (28) and (33),
they have a unique intersection, and thus pc and pt can be
obtained by finding the intersection of the two curves for given
values of N , CWmin, CWmax, rI , and rD.

Figure 3 shows the plots pt as a function of pc. The
monotonically decreasing curves in solid lines are plots of
(28) for n = 1, 2, 4, 8, when CWmin = 16, CWmax =
1024, and rI = 2. The figure shows that as n gets larger
(more conservative reduction of the contention window size),
the probability of transmission pt has smaller value to the
same pc. For comparison purposes, corresponding curves with
CWmax = ∞ are also plotted in dotted lines.
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Fig. 4. Plots of pc and pt with respect to N . CWmin = 16, CWmin = 1024,
rI = 2, n = 1, 2, 4, 8.

Figure 4 shows the plots of pt and pc, obtained by finding
the intersections of (28) and (33), with respect to the number
of nodes N . As the load (N ) increases, the probability of
collision pc increases while the probability transmission pt

decreases. Also note that more conservative backoff policy
(larger n) gives smaller pt, hence smaller pc.

SATURATION THROUGHPUT: Let Psucc and Pcoll be the prob-
abilities that there is a successful transmission and a collision
in an arbitrary time slot, respectively. Then, Psucc and Pcoll can
be calculated in terms of pc and pt as follows:

Psucc =
(
N
1

)
pt(1 − pt)N−1 = Npt(1 − pt)N−1 (34)

Pbusy = 1 − (1 − pt)N (35)

Pcoll = Pbusy − Psucc (36)

The saturation throughput (ST) can be calculated by taking
into account the average time duration of data transmission:

ST =
PsuccE[P ]

PsuccTs + PcollTc + (1 − Pbusy)σ
, (37)

where E[P ] is the average packet payload, Ts is the average
time duration the channel is busy when there is a successful
transmission, Tc is the average time duration the channel is
busy when there is a collision, and σ is the slot time.

IV. OPTIMIZATION OF EIED

We obtain the optimal backoff factors of EIED backoff
algorithm that maximize the saturation throughput. Parameters
defined in the IEEE 802.11 specifications that are not directly
related to the backoff algorithm, such as CWmin and CWmax,
are not optimized. Specifically, given CWmin and CWmax, we
find optimal M and n that maximize the saturation throughput.
Note that finding M and n is equivalent to finding rI and rD.
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Fig. 6. Plots of the saturation throughput of EIED. Access mechanism: basic,
CWmin = 16, CWmax = 1024, Optimum at (M, n) = (12, 11).

As shown in (37), if the cost of collision is large (large
Tc), the saturation throughput is very sensitive to the change
of Pcoll, and thus it is beneficial to have more conservative
backoff policy (large rI and/or small rD) to reduce pc. When
the cost of collision is small (small Tc), we obtain better
performance with a more aggressive backoff policy that yields
small probability of idle channel.

In this paper, we present an example of optimization of
the backoff parameters of EIED. For simplicity, we fix the
packet payload to 1024 bytes. The optimization is conducted
for 0 < N < 40, where N is weighted with the weighting
function shown in Fig. 5. The significance of the weighting
function is that, the performance of EIED is equally important
for any N between 10 and 30, inclusive, but it is less important
for N < 10, or 30 < N < 40, and N ≥ 40 is of no interest.
We calculate the saturation throughput in (37) for each N , and
using the weighting function in Fig. 5, the optimum M and n
are determined to maximize the weighted sum of the saturation
throughput over N . For practical networks, which is often
more complicated compared to our scenario, the methodology
used in this paper can be easily applied using EN [ST] instead
of ST in (37), where EN [·] represents an expectation over the
distribution of N . In fact, in optimizing EIED for practical
networks, the real challenge lies in collecting accurate statistics
of the network such as the distributions of the packet length
and network load N .

Fig. 6 shows the analytical saturation throughput vs. N

when the basic access mechanism of DCF is used for various
values of (M,n), including the optimum pair (12, 11) which
implies that rI =

√
2, and rD = 21/22. EIED with (12, 11)

offers the best overall performance in the range 0 < N < 40,
for which EIED is optimized. Note that the range of the
saturation throughput in Fig. 6 is from 0.75 to 0.85. EIED with
(12, 11) shows quite consistent saturation throughput of about
0.83 for from N = 10 to N = 40. It is interesting to note that
EIED with (12, 14) displays peformace improvement as the
number of nodes increases in the range 10 < N < 40. This
is because rD is too small that it takes too many successful
transmissions to return to the previous Wi after a collision,
causing underutilization of the channel when the number of
nodes is small. Note that it takes 14 successful transmissions,
as oppose to 11 successful transmisison for the optimal EIED,
to compensate a single collision.

The performance curve for BEB is not included in Fig. 6,
because since the performance of BEB is so poor that includ-
ing it will make it hard to compare the EIED performance
curves for various parameter pairs. The saturation throughput
of BEB is about 0.7 for N = 10, and 0.57 for N = 40. Note
that even the two worst performers in Fig. 6, (M,n) = (6, 1)
and (M,n) = (6, 2), easily outperform BEB.

V. CONCLUSION

EIED backoff algorithm was proposed in [1] to enhance
the performance of the IEEE 802.11 DCF. EIED provides
significant performance improvement without additional com-
plexity. But the analysis of EIED was not provided to show
its outperformance theoretically.

In this paper, we extend the work in [1] through an analysis
of EIED backoff algorithm and present a methodology of
obtaining the optimal parameters of EIED backoff algorithm
in a given condition. The methodology used in this paper can
be easily applied to real scenarios which is much more com-
plicated in general. In fact, in optimizing EIED for practical
networks, the real challenge lies in collecting accurate statistics
of the network such as the distributions of the packet length
and network load N .
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